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Global stability of time-dependent flows. 
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(Received 22 May 1973) 

The method of energy is used to develop two stability criteria for a large class 
of modulated BBnard problems. Both criteria give stability limits which hold for 
disturbances of arbitrary amplitude. The first of these, designated as strong 
global stability, requires the energy of all disturbances to decay monotonically 
and exponentially in time. Application of this criterion results in a prediction 
of Rayleigh numbers below which the diffusive stagnant solution to the Bous- 
sinesq equations is unique. The second criterion requires only that disturbances 
decay asymptotically to zero over many cycles of modulation, and is a weaker 
concept of stability. Computational results using both criteria are given for a 
wide range of specific cases for which linear asymptotic stability results are 
available, and it is seen that the energy and linear limits often lie close to one 
another. 

1. Introduction 
Following its modern reformulation by Serrin (1959) and Joseph (1965, 1966), 

the energy stability method has found increased utility in providing sufficient 
conditions for stability of a large number of steady flows. In  a previous paper 
(Homsy 1973), the method was applied to the unsteady problem of impulsive 
heating or cooling of fluid layers. The primary result appears as a demarcation 
of regions in the Rayleigh number-time plane for which one can ensure stability 
of the diffusive temperature field to disturbances of arbitrary amplitude. It was 
shown that, for Rayleigh numbers below those calculated therein, all distur- 
bances decay exponentially in time, and hence the diffusive solution is the unique 
solution to the Boussinesq equations. In  the present paper, the treatment is 
extended to the related problem of fluid layers subject to modulations in either 
heating, cooling or gravity. 

It seems appropriate at  the outset to provide a set of definitions which will 
facilitate the discussion below. Several notions of stability are in use by various 
authors. We shall refer to a flow as strongly globally stable if disturbances of 
any magnitude decay exponentially in time, in the mean. It follows that a 
strongly globally stable flow constitutes a unique solution to the relevant govern- 
ing equations. By asymptotically stable, we mean those flows for which dis- 
turbances of arbitrary magnitude, while not exchded from growing, must 
ultimately decay in the mean as time increases. With reference to the class of 
modulated flows under discussion here, such a flow is asymptotically stable if the 
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net growth of any disturbance, taken over one cycle of modulation, is negative. 
Linear asymptotic stability, then, will imply similar statements regarding the net 
growth over one cycle, but with the additional restriction that disturbances niust 
remain small enough for the linearized equations to hold. Clearly, a flow may be 
regarded as ‘stable’ or ‘unstable’ according to the particular definition adopted 
and, as we shall see below, there are circumstances under which one usage may be 
preferable to others. 

There exist a number of theoretical studies treating the linear asymptotic 
stability of modulated fluid layers, notably Venezian (1969), Rosenblat & 
Herbert (1970)) Gresho & Sani (1970)) Rosenblat & Tanaka (1971) and Yih 
& Li (1972). All of these papers deal with modulated Bhnard problems of one type 
or another, and all have adopted as the stability criterion zero net growth over 
one cycle. As is well known, the mathematical treatment centres around the use 
of Galerkin’s method to describe the spatial dependence of the disturbances, 
and the application of Floquet theory to describe the asymptotic stability 
characteristics of the resulting ordinary differential equations. A survey of these 
results indicates a predicted stabilization of the layer over ranges of frequency 
and amplitude of the modulation. The stabilization increases with increasing 
amplitude up to the point a t  which a subharmonic response limits the degree 
of stabilization. At higher amplitudes, the layer may be destabilized (Yih 
& Li 1972), or may approach a limiting degree of stabilization (Gresho & 
Sani 1970). A second general feature of these results is that the degree of 
stabilization is apparently a maximum in the limit of very low frequency, 
and becomes small as the frequency increases (Venezian 1969; Rosenblat 
& Tanaka 1971). This effect is a consequence of the stability criterion 
adopted, and leads to a pair of questions which has been recognized and dis- 
cussed by the above authors: ( a )  does the stability criterion have any physical 
relevance if one cycle exceeds the lifetime of an observer; and (b)  does a disturb- 
ance grow over the unstable part of the cycle to an amplitude which would 
invalidate the use of linear theory Z 

In  addition to these questions, there is a related consideration which derives 
from the experiments of Donnelly (1964) on modulated Taylor-Couette flow. 
In  a study designed to test for the occurrence of Taylor vortices which persisted 
in time, he found that the degree of stabilization observed was negligible in the 
limits of both zero and large frequencies. 

Rosenblat & Herbert (1970) discussed and attempted to deal with these ques- 
tions and in doing so proposed another definition of ‘stability ’ in addition to  the 
usual periodicity criterion. They introduced an ‘ amplitude ’ criterion which de- 
fines the flow as ‘stable ’ if, during the unstable portion of the cycle, the amplitude 
of a disturbance does not grow beyond a prescribed value. This criterion suffers 
the same defects as does amplification theory as applied to impulsively started 
problems, namely that amplitudes are determined only relative to an initial value, 
and the ‘ critical’ relative amplitude remains indeterminate (Homsy 1973). 

It appears, then, that there are circumstances under which the usual linear 
theory yields stability limits which are inapplicable for a number of reasons. It 
is therefore of interest to develop and examine other stability criteria which 
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complement those already available and which may serve as more attractive 
definitions of ‘stability’ in certain cases. There are two constraints present in the 
linear theory which might be relaxed: that of small amplitude disturbances 
and the periodicity condition. The restriction posed by the periodicity criterion 
has been removed in the low frequency or quasi-static limit by Rosenblat & 
Herbert (1970). They prove the intuitive result that modulated layers are stable 
to infinitesimal disturbances if the Rayleigh number is at  all times below the 
classical value for steady heating. This result follows from the fact that in the 
quasi-static limit the temperature gradient is constant in space, with an ampli- 
tude which is time-dependent. 

In  the present paper, we seek the strong stability and asymptotic stability 
criteria using the method of energy. Energy methods have been previously 
applied to modulated Taylor-Couette flow by Conrad & Criminale (1965) and 
to the oscillatory Stokes layer by von Kerczek & Davis (1972). Conrad & Crimin- 
ale developed strong stability criteria for a restricted class of axisymmetric dis- 
turbances under the narrow-gap assumption. These results are hence not global 
limits for the flow. Von Kerczek & Davis gave both strong global stability limits 
for three-dimensional disturbances and strong stability results for disturbances 
constrained to be two-dimensional. The present work reports the corresponding 
strong global stabilitylimits for modulated layers. The results appear in the form 
of a critical Rayleigh number, dependent only upon the amplitude and frequency 
of the modulation, below which the diffusive stagnant solution to the Boussinesq 
equations is unique. An adjunct of the calculation is an extension of the 
Rosenblat-Herbert quasi-static result to disturbances of arbitrary amplitude. 

In  addition to the results mentioned above, Davis & von Kerczek (1973) 
have recently presented a reformulation of the energy method which allows the 
treatment of asymptotic stability of modulated flows, i.e. no net growth of 
arbitrary-sized disturbances over one cycle. For steady flows, the reformulation 
reduces to the previous results of Serrin (1959) and Joseph (1966). We have 
developed the corresponding treatment for modulated layers, which results in 
stability limits less stringent than the strong global limits alluded to  above. In  
addition, thenew formulationof the energy theoryresultsin the stability boundary 
now becoming a function of the Prandtl number as well as the amplitude and fre- 
quency of modulation. These new results, taken together with those previously 
available, give a fairly complete description of the stability limits for this class 
of problems for a variety of stability criteria and specific modulation histories. 
Of particular interest is the fact that the energy and linear stability limits are, 
under some circumstances, close, thus appreciably restricting the regions in 
parameter space for which subcritical convection is possible. 

In $2 we define the basic state whose stability is to be examined, and present 
the energy identities. Section 3 consists of a formalization of the definitions of 
stability which we advanced above. The ideas are illustrated for the case of 
gravity modulation in $ 4, since the results there are particularly straightforward. 
In  $ 5  we present detailed computational results for two choices of surface 
temperature modulations, and we conclude with a discussion of the results and 
a comparison with available experiments in $6. 
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2. Preliminaries 
The base state 

In order to be able to make a comparison with the previously developed linear- 
theory results, we shall treat a wide class of modulated B6nard problems, and we 
shall make the appropriate reductions to special cases in later sections. Consider 
an infinite fluid layer bounded by surfaces a t  z’ = 0, d respectively, and let the 
surface temperatures be given in dimensional form by 

To + T, cos ( ~ ’ t ’ ) ,  
Tl + ST, GOS (w’t ’ ) ,  

Z’ = 0,  
Z’ = d. 

T = {  

Furthermore, let the layer be subject to gravity modulation of amplitude eg. 
Then let the variables be scaled according to {z,  t ,  0} = {d, d2/K, To - Tl}. The 
Boussinesq equations then admit a stagnant solution in which the dimensionless 
temperature 8 = (2’- Tl)/(To - TJ satisfies the diffusion equation 

aB/at = a28/az2, 

subject to  the conditions 
1 +a cos ( w t ) ,  z = 0,  

0 = {  Sacos(wt), x = 1. 

Here a = T,/(To-Tl) and will be referred to as the modulation amplitude, 
and w = W‘K/d2 is a dimensionless modulation frequency. I n  addition to (2.1) and 
(2.2), the base state consists of a hydrostatic pressure field whose exact form is of 
no consequence in what follows. 

The solution to (2.1) and (2.2) is easily found to be 

Ssinh (bx) + sinh [p( 1 - x ) ]  
sinh /3 

- 

p = (io)$ = (1 +i) (&J)+. 

Thus S= - 1 (e = 0 )  corresponds to the case considered by Yih & Li, and 
6 = 0 (8 = 0) to that of Rosenblat & Tanaka. The effect of gravity modulation 
will appear in the dynamic equations themselves. It is this base state for which 
we shall develop stability limits below. 

The energy identities 
For the disturbances, let the scalings be 

{r, t ,  V ,  p ,  e} = {d, d 2 / K ,  K / d ,  p K V / d 2 ,  AT}. 

The nonlinear Boussinesq equations then take the dimensionless form 

r1 (av/at + v.  Vv) = - V p  -I- V2v + Ra0k( 1 + e sin wt) ,  

a0pt + v . v0 = v20 - wa8laz. 
(2.4) 

(2 .5)  

The notation is standard; B is the Prandtl number, Ra the Rayleigh number, 
O(z, t)  the base state (2 .2) ,  o the dimensionless frequency, e the amplitude of the 
gravity modulation, and w = k . v  the vertical velocity. The case treated by 

- 
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Gresho & Sani is thus given by a = 0, e + 0. For planar boundaries across which 
there is no flow, and which, for convenience, we take to be conducting, one can 
derive the energy evolution equation in its symmetric form (cf. Homsy 1973) 

-(VV:VV+ ]V$12) (A 3 0). (2.6) 
(w$( 1 + csinwt)) 

At  
= Rat{ - 

The angular brackets denote volume integration over the layer. We may 
also write (2.6) as 

dE/dt = Ra4 Ih(t) - D, (2.7) 

where I-, and D are defined accordingly. Equation (2.6) is exact and holds for any 
solution to the Boussinesq equations. It is from (2.3) and (2.6) that the stability 
criteria will be developed. 

3. Stability criteria 
In  this section we express mathematically the two stability criteria which form 

the basis of this paper, viz. strong global stability and asymptotic stability. In  
the process of doing so, we also discuss the optimal stability boundary, which 
gives the method by which the free positive constant h is chosen. 

Strong global stability 

Strong global stability, and hence uniqueness of the base state (2.3), is proved 
in the usual manner (cf. von Kerczek & Davis 1972). From (2.6) we first deduce 
the energy inequality 

D-l dEldt < - 1 + Ra+/p,. (3.1) 

Inequality (3.1) holds whenever ph is a solution to the maximum problem 

(3.2) 
- 1 = max {‘.;$(l+$Wt D - A4 :) y , 
Ph h 

h = {v, $10. v = 0; (v,  $) E C2, Fourier-transformable or periodic in the horizon- 
tal plane; v = $ = 0 at z = 0, l}. 

Clearly ph is parametrically a periodic function of time with period 27~10. 
Denote the minimum of this function by R,,,, i.e. 

Rs,-, = min p-,(t). 
t € [ O ,  Znlw1 

(3.3) 

Then it is not difficult to prove that the layer is strongly stable for Rayleigh 
numbers rmch that Rat < RS,-,. From (3.1) we have 

(3.4) D-1 dE/dt < - I i- Ra)/Rs,h. 
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Couple this with the inequality D 2 t2E (Joseph 1965) to find 

or 

E-IdEldt < E2( - 1 -t Ra*/RS,J, 

E( t )  = E(0)  exp { - g2( I - Ra*/RS,,) t}. 

Thus for Rat < RS,h the energy of any disturbance always decays exponentially 
in time. The optimal stability limit is clearly given by choosing A so that 
RS,A is as large as possible. This value of RS,* will be denoted by R,; 

R, = max min ph(t) .  
h t c [0 ,2n/wl  

(3.7) 

Asymptotic stability 

It is clear that the strong stability results computed in the above manner are the 
best possible if one requires that disturbances should always decrease. Davis & 
von Kerczek (1973) have shown, however, that one can develop a criterion which 
ensures that although disturbances may grow to a large amplitude over part of 
one cycle, their magnitude decreases asymptotically to zero over many cycles. 
Their ideas may be readily adapted for the present discussion. Interestingly 
enough, if one adopts asymptotic stability as the criterion, the Prandtl number 
reappears as a parameter of the problem. The essence of the approach is to avoid 
the use of the isoperimetric inequality D B k2E, and thus obviate the need to 
carry out the minimization in (3.3). 

Return to the energy evolution equation (2.7): 

dE/dt = Ra* Ih(t) - D. 

Now consider the maximum problem 

for any fixed Rayleigh number Ra. Then combining (2.6) and (3.8) we deduce 
the energy inequality 

dE[dt < vA(t)  E.  (3.9) 

It is essential to note that, since we have not required the introduction of the 
isoperimetric inequality, (3.9) is a bound for the energy growth as well as the 
decay of all kinematically admissible functions in h. Clearly vA( t )  is again a 
periodic function o f t .  Integration of (3.9) yields 

Accordingly, the base state is asymptotically stable if 

or equivalently 
E(t + 2r/w)/E(t) < 1.0. 

(3.10) 

(3.1 1 a )  

(3.  I 1 b)  

Now the optimum stability boundary is determined by choosing h so that 
E(2n/w)/E(0) is as small as possible, and the energy limit for this criterion is 
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given by the largest Rayleigh number Ra for which (3.11) holds. We shall denote 
this stability limit by RA, and the layer is hence asymptotically stable in the 
mean for Ra4 < RA. 

4. Gravity modulation 
We have chosen to  treat the case of gravity modulation separately; some 

general results may be obtained without detailed computation and we feel that 
displaying these may help to bring out various features of the criteria advanced 
above. We thus set a = 0 above, and the energy evolution equation reduces to  

dE - = RaB (w4) ( 
at 

1 + E sin wt + h 
At  

since aB/az = - 1. 

Consider first the strong stability limit, for which one considers the following 
problem: * 

- max- 
1 _ -  

PA h D 

The Euler-Lagrange equations for the maximum problem (4 .2)  are found to be 

v . v  = 0, (4 .3a )  

v24 +T P A ( l  + E S y t + h ]  w = 0. 

(4 .3b)  

(4 .3c)  

These equations are identical to the linear BBnard equations for the steady case 
with Ra* replaced by the factor &pA { }. Thus for infinite plane layers, the solution 
of the Euler-Lagrange equations ( 4 . 3 ~ )  for the most dangerous Fourier mode 
is 

(4 .4)  

where, for example, RL = 1708 for rigid conducting boundaries. The global 
limits follow from (4 .4)  as 

Thus for Rayleigh numbers 
Ra < Ri / (  1 + 6 )  

(4.5) 

the layer is strongly globally stable. Inequality (4 .6)  of course has a compelling 
physical interpretation. It states that the gravity-modulated layer is globally 
stable for Rayleigh numbers below which the available potential energy due to 
the stratification never exceeds that necessary to initiate convection in the steady 
case. 

We now indicate how this result may be improved upon if one relaxes the 



394 G. M .  Homsy 

criterion to that of asymptotic stability. In  this case, (3.8) becomes the maxi- 
mum problem and the Euler-Lagrange equations for gravity modulation become 

v.v = 0) (4.7a) 

(4.7b) 

(4.7c) 

vAv/cr = - Vrr + V2v + Rat g(h, t )  $k, 

vA$ = V2$ + Ra2g(h, t )  w, 

where g(h, t )  = (1 +~sinwt+h)/2ht. We have not been able to solve (4 .7 )  in 
general. Below we give a calculation for ‘freefree’ boundaries, in which case 
the solution may be developed in some detail. It is expected that the results for 
other boundary conditions would not differ in essential features.? Equations 
(4.7a-c) may be combined in the usual way to yield a system in (w,$) alone. 
To ( 4 . 7 ~ )  we append 

where V2, is the horizontal Laplacian. Since (4.7c,  d )  are cyclic in the horizontal 
co-ordinates, we have for free-free boundaries 

v,V2w/u = V4w + Ra*g(h, t )  V2,$, ( 4 . 7 4  

When (4.8) is substituted into ( 4 . 7 ~ )  d )  and non-trivial solutions for 8 and 6 are 
required, the following relation between vA, u and Ra results: 

v;h/c+v,(l +r1)h2+h3-Raa2g2(h , t )  = 0, (4.9u) 

or vA = - +{( 1 + c) h + [( 1 + C T ) ~  h2 + 4(Ra a2g2u/h - c7h2)]+}, (4.9b) 

where h = n2 + a2 and Bg = h3/a2 = (n2 + a2)3/a2 is the critical Rayleigh number 
for these boundary conditions for steady heating from below (Chandrasekhar 
1961, p. 35). Some algebraic manipulation yields 

vA = gh{-(a+ 1)+[(l-u)2+4u(Ra/R~)g2(h,t)]*). (4.10) 

It has not been possible to proceed at  this level of generality and apply the 
periodicity condition ( 3 . 1 1 ~ ) :  it is possible, however, t o  treat the special cases 
c = 1, CT -+ 0 and CT --f 00. For u = 1, we have 

V RaB l+ssinwt+h > = - I + -  
h RL ( 2h.t ) -  

Now the criterion for asymptotic stability is 

which is satisfied whenever 
Ra*/R, < 2h:/( 1 +A) .  

(4.11) 

(4.12) 

The value of h which makes the region of stability as large as possible is simply 
h = 1 ; the layer is asymptotically stable for Rayleigh numbers less than the linear 
limit for steady heating, i.e. R ,  = R,  at CT = 1. 

t I am indebted to Prof. Stephen H. Davis for providing the details of this calculation. 
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Consider now the case a + 00; ( 4 . 9 ~ )  yields 

V A  = (a2/h2) (Rag2(A, t) - R i )  (4.13) 

and the periodicity criterion yields 

Ru < 4hRi/[( 1 + A)2 + 4Fj.  (4.14) 

Taking A as the value which maximizes the region of stability (A2 = 1 + i s2 ) ,  
we have the optimum asymptotic limit 

R, = 2RL/[1 + (1  + & 3 4 ]  as cr -+ 00. (4.15) 

The case a + 0 proceeds in the same manner. From ( 4 . 9 ~ )  

vA = a(a2/h2) (Rag2(A, t) - Ri) ,  (4.16) 

which is identical to (4.13) except for a multiplicative factor of a. This factor 
cannot alter the stability limit given by the periodicity condition, and thus we 
have, as before, 

R, = 2R,/[1+ (1  + 4e2)4] as a + 0. (4.17) 

We note here for future reference that ( 4 . 9 ~ )  is symmetric in the following sense: 
if (vA, cr) is a solution to ( 4 . 9 ~ )  then (vAv, a-l) is also a solution. Since we subse- 
quently invoke the periodicity criterion, the factor of (T in the latter solwtion does 
not affect the marginal curve on which ) vAdr = 0. Thus we conclude that 
R,((T) = RA(+). We also note that these results complement those of Gresho 
& Sani (1970) by giving the lower limits for which gravity modulation may de- 
stabilize a fluid layer. Gresho & Sani suggest that such a destabilization might 
occur, but they provide no calculations which support this conjecture. Finally, 
the stability limits are such that R, < R, < R,, as must be the case. 

5. Surface temperature modulation 
We now present the results of detailed computations for cases when the surface 

temperature is modulated, i.e. u 9 0, B = 0. The computations have been re- 
stricted to the cases for which linear-theory results have been obtained, viz. 
rigid-rigid boundaries with S = 0 (Rosenblat & Tanaka 1971) and S = - 1 (Yih & 
Li 1972). 

The quusi-static limit 

There is a direct analogy between the cases of gravity and surface temperature 
modulation in the limit of very low frequency (w -+ 0) which we wish to exploit 
here before proceeding to the general case. First consider strong global stability. 
The Euler-Lagrange equations corresponding to (3.2) for e = 0 become 

v .v  = 0, ( 5 . 1 ~ )  

(5.lb) 
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where we have written 

a8/& = - 1 - aRe {eiwt/3[cosh (/3( 1 - 2)) - S cosh (/3z)]/sinh/3t 

= - 1 - ug(2, t ) .  

g(z,  t )  = Re [eiwt(( 1 - S) + iw($( 1 - z2)  - Q) + ...>I 

(5.2) 

(5.3) 

Now for small w ,  an expansion about w = p = 0 gives 

and thus in the limit w = 0 the base-state temperature gradient is quasi-static, 
i.e. it is independent of x with a modulated amplitude 

ae/az = - i - a( I - 6)  00s ot + o ( w ) .  (5.4) 

In  this case, equations (5.1) again reduce to the linear BBnard equations for the 
steady case, and one finds, in analogy with the discussion following (4.2), that 

R, = RL/[ 1 + a( 1 - a)]$. (5.5) 

The Rosenblat-Herbert quasi-static result is thus extended to all finite anipli- 
tude disturbances. We have carried out a perturbation expansion in w ,  but the 
details are not worth pursuing here, since they are pre-empted by the numerical 
calculations presented below. 

It is also possible to show that, in the quasi-static limit, the asymptotic 
stability criteria for gravity and surface temperature modulation coincide. 
Of course, the practicality of the asymptotic criterion can be called into question 
in this case, since the period of one cycle may be longer than the lifetime of 
an observer. I t  is well to record the results here anyway, since they serve as 
limiting cases. For free-free boundaries in the quasi-static limit, it is possible to  
show that 

Ra - { 2 R J [ l +  (1 + ;c2( 1 - S)')fr], q -+ 0, a, 
4 -  R,, 0- = 1.0, 

illld R,(q) = E,( - 0-1. 

Xtrong global stability 

A fairly complete parametric study was done for the strong stability results 
for both S = 0 and 6 = - 1. The system ( 5 . l a , b )  may be combined to give, in 
addition to ( 5 . l c ) ,  

f y + A + a A g ( z , t )  2 A4 Vz,$+V4W = 0. (5.1d) 

Now (5.1 c,  d )  are cyclic in the horizontal co-ordinates, so 'LO and $ can be Fourier 
transformed into modes characterized by a single wavenumber a. The x-depen- 
dent parts of the transforms 8 and 6 were then expanded in trial functions which 
consisted of sines for 6 and 'beam' functions for I% (see Chandrasekhar 1961, 
appendix 5) .  As in Homsy (1973), the expansion resulted in an algebraic 
eigenvalue problem for p A  (t;a). If N terms are taken in each expansion the 
resulting 2 N  x 2 N  problem may be reduced to an N x N problem as before. 
Up to ten terms were taken in each expansion, and the optimum stability bound- 
ary was computed as R, = min min maxph(t; a), 

t a h  
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FIGURE 1. The stability limits for modulation of the bottom surface temperature. -, 
strong global stability limits; - - - - , linear asymptotic stability limits of Rosenblat & 
Taneka (1971) for r~ = 1.0. 

using standard optimization routines. Details of the computational procedure 
are available from the author upon request. 

The results for bottom-plate modulation (6 = 0 )  are shown in figure 1. 
For w = 0 , l  and 10 the computed results are very close to the quasi-static 
limit R$ = RL/(l +a) ,  i.e. R i  = 1708/(1 +a). For higher frequencies the stability 
limits increase, which is a consequence of the fact that, as w becomes large, the 
function g(z, t )  describing the time-dependent part of the gradient develops a 
boundary-layer character. At very large frequencies in fact, g(z, t )  is zero every- 
where except in a layer of dimensionless thickness O(w4) near the bottom bound- 
ary. Thus it is reasonable to expect that Rs+R, as w + a; the trend of the 
computed curves bears this out. The behaviour at high amplitude is also con- 
sistent with previous work. Consider the case of high amplitude and high fre- 
quency. Let the time t be fixed at  that value t* for which the minimum of p,, 
occurs. Then the problem (5.1) for that $xed time is mathematically (but not 
physically) analogous to the energy stability theory for a layer with non-uniform 
heat sources: the strength of the source is given by a and the spatial structure 
by the function g(z, t*). Joseph & Shir (1966) have shown that for uniform heat 
sources the energy limits behave as RE + constantla for large a. It is possible 
to repeat their arguments for non-uniform heat sources, but we shall not do so 
here. It is clear from figure 1, however, that the same relation applies to the pres- 
ent problem as the amplitude of the modulation becomes large. Also shown on 
figure 1 are the limited results of Rosenblat & Tanaka (1971) for a Prandtl 
number of unity, for two frequencies. Since their results indicate a maximum 
stabilization for CT N 1.0, at least over the parameter range considered, the curves 
provide an upper bound for the degree of stabilization expected for a < 1.0 and 



398 G. M .  Homsy 

1 I I I I 

', 0=0.73 
\ w=l, 10 
\ 
\ 
\ 

100 

50 1 J 1.2 0.5 I 1 I .o 2.0 1 10 5.0 w = O  I 

a 

FIGURE 2 .  The stability limits for modulation of top and bottom temperatures. --, 
strong global stability limits ; - - - - , approximate envelope of linear asymptotic limits of 
Yih & Li (1972). 

moderate frequencies. It is important to note in this and later comparisons that 
the stability criteriain the two cases areradicallydifferent. The linear theorygives 
sufficient conditions for the net growth and hence instability of small disturb- 
ances, while the strong energy limits give sufficient conditions for exponential 
decay of arbitrary disturbances. A more suitable comparison follows the dis- 
cussion of the asymptotic stability results. Subcritical instabilities are possible 
only in the band between the linear and energy limits and the width of the band 
decreases with increasing frequency. Everywhere below the strong energy 
limits, the1diffusive solution 8 ( z ,  t )  is unique. 

The results for modulation of top and bottom surface temperatures (8 = - 1) 
are shown in figure 2. The strong energy limits are qualitatively similar to those 
in figure 1. Also shown in figure 2 is the approximate locus of the linear asymptotic 
results of Yih & Li (1972) for available values of c and w.  The detailed curves 
have discontinuities at  points for which the response changes from synchronous 
to subharmonic, but the fine details are not of interest here. It is notable that 
Yih & Li predict a destabilization a t  high modulation amplitudes which are 
not excluded by the energy limits. The region of allowable subcritical instabilities 
is larger in this case, but the stability limits still remain within an order of 
magnitude of each other. 
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Asymptotic stability 
The computation of the asymptotic stability limits was more involved. For 
modulated surface temperatures, the Euler-Lagrange equations for the maxi- 
mum problem (3.8) can be combined to yield the following set of equations for 

(5.6a) 

( 5 . 6 b )  

where the form of g(z ,  t )  is implied by (5.2). 
To solve for YA(t)) we again applied Fourier decomposition followed by Ray- 

leigh-Ritz expansions for & and $. Although the resulting algebraic problem 
could be made symmetric, it  was not possible to reduce the problem to an N x N 
problem as before. Thus to generate vA(t) at a given value o f t  it was necessary 
to solve a 2N x 2N generalized eigenvalue problem, which substantially in- 
creased the computation time. The computation proceeded as follows: given a 
set of parameters {u, Ra,  A, a, w ,  a}, the quantity 

nlo 

-nlw 

was computed. To minimize the iiumber of function evaluations necessary, the 
integral was evaluated numerically using five- or seven-point Gauss-Legendre 
quadrature. The next step was to compute 

F,, = / v ~ ( 7 )  dT 

i; = min max PA 

using standard optimization techniques. 5 o€ course gives the amplification 
over one cycle of the most dangerous Fourier mode, with h adjusted to minimize 
that amplification. Finally, for a given u, a and w ,  the Rayleigh number R a  
was varied to find the point at which i; = 0; the value was designated as R,. 

Three parametric studies were made by varying each of u, a and w with the 
other two held fixed. We chose to treat the Rosenblat-Tanaka boundary con- 
ditions (8 = 0) as representative of the results obtained with this criterion. The 
first of these studies is shown in figure 3, where we have compared the linear 
asymptotic, asymptotic and strong stability limits for the case u = 1.0, w = 1.0, 
with varying a. The computations of Rosenblat & Tanaka are not as extensive 
as they might be, but comparison of the two energy limits gives a measure of the 
improvement in stability limits to be obtained as one relaxes the criterion. 
Figure 4 shows a similar parametric study for u = a = 1.0, with w varying. 
The linear asymptotic results exhibit a maximum in predicted stabilization as 
o + 0, and as we have noted in the introduction, adoption of this criterion may 
not be advantageous in this limit. The strong energy limits are of course in- 
dependent of Prandtl number, and rise steadily from the quasi-static limit 
(5.5) to the apparent asymptote R, = R,as the effects of the modulation become 

h a  
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FIGURE 3. The three stability limits for modulated bottom temperatures as a function of 

totic stability limit; - - -, strong global stability limit. The lower curve is independent 
of Prandtl number. 

modulation amplitude for CT = w = 1.0. -, Rosenblat & Takaka (1971) ; - - - - , asymp- 

2 . 0 ~  1.8 

0.8 ' I I I I I 

20 40 60 80 100 
0 

FIGURE 4. The three stability limits as a function of frequency for CJ = a = 1.0. --, 
Rosenblat & Tanaka (1971) ; - - - - - -, asymptotic stability limit; - - - - , strong global 
stability limit. 
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0- 0.5 1.5 5.0 10.0 
Ra, (Rosenblat & Tanaka) 2090 2080 1905 - 

R i  1710 1670 1623 1605 

TABLE 1. Comparison of linear- and energy-theory limits for asymptotic stability as a 
function of Prandtl number for a = o = 1.0. The strong stability limit is R; = 854. 

confined to a small region near the bottom plate. The asymptotic energy limits 
are instructive for two reasons. First, they confirm the quasi-static limit 
R, = R,, which we have proved only for free-free conditions. More important, 
they provide a more logical basis for comparison with the linear limits, since 
the criteria for stability are similar. It is of particular interest, then, to note 
that the two limits are close, and thus subcritical convection, if it occurs, is 
confined to Rayleigh numbers in the region between the two limits. Thus, the 
present class of problems appears to be one in which the linear and energy 
stability results strongly complement each other. 

Finally, in table 1, we have compared the Prandtl number dependence for 
the energy and linear theories respectively. Surprisingly, the dependence 
appears to be similar, with both theories predicting maxima in the range 
0.5 f c < 1.0. 

6. Discussion 
We have defined and developed criteria for stability of modulated BBnard 

problems which seek to provide alternative definitions of stability to those 
previously advanced. The question of the applicability of these various criteria 
to experimental situations naturally arises. Unfortunately, there are few 
experiments available for comparison. We have already mentioned the experi- 
ments of Donnelly (1964) on the related problem of modulated Taylor-Couette 
flow. (We have not done so here, but it is possible to show that, under the assump- 
tions of axisymmetric disturbances and the narrow-gap approximation, the 
modulated Taylor-Couette problem is mathematically analogous to the theory 
developed above; cf. Conrad & Criminale (1965).) Previous authors, in an effort 
to compare Donnelly’s experiments with the linear asymptotic theory, have 
apparently overlooked the following definition which Donnelly himself ad- 
vanced for stability. “The criterion for instability with modulation was taken to 
be the presence of regular cells.. . . Under certain circumstances, one can find a 
trace of cell motion as soon as the criterion n + A Q  = QZ,[Ra(l +a)  = R:] is 
exceeded. However, . . . , the [averaged] signal amplitude does not increase 
appreciably showing that these are transient vortices and d o  not amplify ... . 
We take as our criterion for the onset of stability that speed at  which the signal 
amplitude starts to increase with increasing ~ [ R u ] . ”  (The emphasis is added.) 
Thus Donnelly considers a flow ‘stable’ until the appearance of fully developed 
Taylor vortices of sufficient amplitude to be detected by his particular measure- 
ment technique. There exist no theoretical studies to our knowledge which use a 
similar criterion for stability, for to do so would be to undertake the prediction 
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of the final equilibrated finite amplitude motion. It is also interesting to note that 
Donnelly considers flows which exhibit measurable motions over only part of a 
cycle as being ‘stable’, while such motions may have profound effects on the 
transport of heat, mass or momentum in the system. We are of the opinion, 
therefore, that these particular data form a poor basis for comparison with theory. 

Recently, Finucane (1972) has conducted an experimental study of the 
onset of instability in fluid layers with modulated bottom temperature. The 
study was confined to low frequencies (0 6 w < 4.0) and moderate amplitudes 
(0 < a < 1.0). ‘Instability’ was defined as the occurrence of any measurable 
ZocaZ departure from the diffusive solution, which thus constitutes a stringent 
criterion indeed. For large amplitudes, the data fully support the quasi-static 
criterion 

Ra < Rk/(1+ a)  

for stability so defined. For moderate amplitudes, a N 0.5, w < 1.0, the quasi- 
static result is again in complete agreement with the measured ‘stability’ 
curve. For slightly higher w (1.0 < w < 36) ,  Finucane finds some degree of 
stabilization, but measurable local convection still occurs for Ra < R,. This 
is consistent with the strong energy limits given in figure 2 in the sense that 
convection does not occur below the energy limit. Over this small range of 
frequency the strong stability limits remain unchanged, while the experiments 
show some stabilization. This is perhaps not surprising, since care was taken in 
the experiments to eliminate large extraneous disturbances. In  short, the 
experiments are consistent with the strong stability limits and most important, 
demonstrate the inapplicability of the periodicity criterion a t  low frequencies. 

What is needed at  present is experiments at  higher w which would indicate 
at what frequencies the periodicity condition becomes advantageous from a 
practical viewpoint. 

I wish to thank Prof. S. H. Davis for helpful discussions and for communicating 
to me his important extension of the energy theory, and the quasi-static result, 
equation (5.5). Dr Gene Golub cheerfully contributed his help with the numerical 
work. The computing was supported by the School of Engineering, Stanford 
University. 
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